
Characterizing the Behavior of a Program Using
Multiple-Length N-grams

Carla Marceau
Odyssey Research Associates1

Ithaca, NY 14850
carla@oracorp.com

1 This work was sponsored in part by the Defense Advanced Research Projects Agency of the Department of Defense, monitored by
the Air Force Research Laboratory under Contract F30602-97-C-0126.

ABSTRACT
Some recent advances in intrusion detection are based on
detecting anomalies in program behavior, as characterized by
the sequence of kernel calls the program makes. Specifically,
traces of kernel calls are collected during a training period. The
substrings of fixed length N (for some N) of those traces are
called N-grams. The set of N-grams occurring during normal
execution has been found to discriminate effectively between
normal behavior of a program and the behavior of the program
under attack. The N-gram characterization, while effective,
requires the user to choose a suitable value for N. This paper
presents an alternative characterization, as a finite state machine
whose states represent predictive sequences of different lengths.
An algorithm is presented to construct the finite state machine
from training data, based on traditional string-processing data
structures but employing some novel techniques.

Keywords
Intrusion detection, computational immunology, finite
automata, string processing.

1. INTRODUCTION
In [5, 6, 8], Stephanie Forrest has shown that the behavior of a
program can be characterized by the sequence of calls it makes
to the operating system kernel. Forrest and her colleagues at
the University of New Mexico have used this observation to
develop a novel and effective method of intrusion detection.
During a training period, system calls from the process running
the program are collected and characteristic patterns of system
calls are placed in a database. Once the normal behavior of the
program has been fully characterized in this way, the database
can be used for intrusion detection. To detect intrusions,
system calls are again collected, but this time they are compared
against the contents of the database. When clusters of
discrepancies between the run-time behavior and the database
are found, it is likely that an attack has occurred. This method

 of intrusion detection has been used to detect attacks in which
some other program takes over a process (for example, in a
buffer overflow attack) or in which a program is being used in
an illegitimate way. The method is simple and effective, can be
tuned to practically eliminate false alarms, and can detect novel
attacks because it is based solely on a program’s normal
behavior, not on characteristics of any particular attack.

This approach to intrusion detection is part of a program of
research called computational immunology, whose goal is to
build a computer immune system, by analogy with the
vertebrate immune system. Intrinsic to the vertebrate immune
system is the distinction between “self”—the individual
organism—and other, possibly pathogens. Analogously, the
database that characterizes normal data is called the self
database, because it describes the “self” of a program, or its
normal execution behavior.

The key to the success of this approach is the method used to
characterize normal program behavior. A trace is a sequence of
observations of the program’s behavior, for example a sequence
of calls made to the operating system kernel by the process
executing the program. Any non-trivial program has an infinite
number of potential traces, which must somehow be
characterized with a finite database. An essential insight was
that the database could consist of short sub-strings that may
occur in a trace. Specifically, consider each sub-string of length
N (commonly called N-gram) of a trace. The set of all distinct
N-grams that occur in all normal traces during the training
period is considered to empirically characterize the program’s
normal behavior. For sufficiently large N, that set is only a
small subset of all possible N-grams, hence the remarkable
effectiveness of the computational immunology approach.

Forrest’s simple and effective method has been used to detect
attacks on Unix privileged processes. To make it work with a
new operating system, one needs to instrument the operating
system and to choose a suitable value for N. The appropriate
value for N depends on the granularity of the kernel calls,
which may vary from one operating system to another.

We have applied this method to distributed applications [10].
In our distributed environment, it was natural to use traces of
calls from client to server, rather than the more traditional
kernel calls. Using application server calls as elements of the
traces meant that we had to find a value for N that was suitable
for a given application. This was a significant problem, since
the granularity of the calls can vary widely from one application
to another. Further, in an operating system environment, one
can assume that operating system experts are able to instrument
the system and find some appropriate value for N. In a

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Characterizing the Behavior of a Program Using Multiple-Length
N-grams

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency,3701 N Fairfax
Dr,Arlington,VA,22203

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Some recent advances in intrusion detection are based on detecting anomalies in program behavior, as
characterized by the sequence of kernel calls the program makes. Specifically, traces of kernel calls are
collected during a training period. The substrings of fixed length N (for some N) of those traces are called
N-grams. The set of N-grams occurring during normal execution has been found to discriminate effectively
between normal behavior of a program and the behavior of the program under attack. The N-gram
characterization, while effective, requires the user to choose a suitable value for N. This paper presents an
alternative characterization, as a finite state machine whose states represent predictive sequences of
different lengths. An algorithm is presented to construct the finite state machine from training data, based
on traditional string-processing data structures but employing some novel techniques.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

distributed application environment, the experts on server
operations are the application developers. We discovered that
the task of finding a suitable N is hard to explain to application
developers and easy to get wrong, so we resolved to find a way
to help the developers perform it.

The solution turned out to be not to choose a value for N, but to
automatically find a set of strings of different lengths (multiple-
length N-grams) that describes normal execution. This turned
out to have several advantages, including simplifying the
detector and possibly reducing the length of time required to
find a characteristic set of strings.

In the remaining sections of this article, we first briefly review
Forrest’s method of characterizing programs and the training
cycle needed to characterize normal program behavior. We
then show how to use traditional string processing techniques to
find a set of strings of different lengths that is equivalent to the
N-gram characterization. Finally, by increasing N but relaxing
the requirement for an exact match, we arrive at a new
characterization that finds a set of strings of “appropriate”
length, without sacrificing the ability to detect anomalies.

2. The N-gram Characterization of Program
Behavior
It is important to note that the self database for a program
consists of all N-grams that occur during training. That is, we
do not slice each trace into segments of length N. Instead, we
collect the contents of a window of width N as it slides along
the trace—hence Forrest’s detection algorithm is called the
sliding window algorithm. For example, consider a trace of
training data, where we use letter symbols to stand for kernel
calls:2

A B C C A B B C C A A B C

If N = 4, the self database consists of the set of all substrings of
length four of the training string:

ABCC

BCCA

CCAB

CABB

ABBC

BBCC

CCAA

CAAB

AABC

After the database has been constructed, we can check
executions of the program against the self database. An
anomaly is an N-gram that occurs during execution but is not in
the database. For example, the string ABCCABBCCABABC
contains the anomalies CABA, ABAB, and BABC. A few
anomalies may simply mean that the training traces did not
cover all normal behavior, but a large cluster of anomalies is a
good indicator of an attack.

2 Note that this string is too short to be considered adequate for

training for even a toy program. It is presented here merely to
illustrate the concepts involved.

Two factors influence the length of time needed for training.
First, it is important to continue training until almost all
“normal” behaviors have occurred, because otherwise there is a
real risk of a high false alarm rate. Complex applications may
have many behaviors and require a long training period.
Second, the choice of N affects the training time, because the
set of (N+1)-grams is naturally larger than the set of N-grams,
for any given trace. In this paper, we will be concerned with
the second factor, which implies that the value of N should not
be too large. On the other hand, a value of N that is too small
can result in a poor characterization of normal behavior.
Choosing N = 1, for example, simply characterizes a program
by the set of kernel operations it calls, which is almost always
inadequate.

It is desirable, then, to use the smallest value of N that can
adequately distinguish between normal and abnormal program
behavior.

2.1 The training problem—why the value of
N varies
In applying the N-gram characterization to distributed
applications, we were concerned with characterizing the
behavior of an application client as it appears to a server from
which it requests service. When the observer of a program is
the operating system kernel, the granularity of kernel calls may
determine a suitable value for N. Some experimentation with
the operating system would then be sufficient to find this value.
In the case of distributed applications, however, each server
determines the granularity of the calls it accepts. The
responsibility for finding a suitable value for N falls on the
application developer.

Training is typically done in one of two ways. One way is to
make up a set of representative test cases and exercise the
program using them. Another is to collect data during actual
use of the program. In either case, it is necessary to decide
when training is complete—incomplete training will lead to
false positives. At the beginning of training, the self database
grows very rapidly; later the rate of growth decreases. When
the rate of growth becomes very small, we say that the self
database converges. At this point, it is likely that the self
database is nearly complete, and training can stop.

If N is too small, false negatives are likely. On the other hand,
increasing the value of N significantly increases the time
required for training. Hence, one would like to use the smallest
value of N that is adequate for avoiding false negatives—but
since training is based only on normal behavior, that value is
not known in advance.

It should be obvious that choosing a value for N poses a
problem for the application developer. He would prefer to
throw the training data into a hopper and obtain either a self
database or a message telling him that the self database does not
yet converge.

2.2 Representing self with multiple-length
N-grams
The sliding window N-gram approach works because small
substrings are good predictors of the next symbol to be
encountered in a process trace. In principle, it seems likely that
the number of symbols needed for predicting the next one

3

varies from one point in a process to another. Our approach is
to look for shortest strings that are good predictors of the next
symbol to occur. Consider, for example, the string
“ABCABCABCABC.” We would characterize this very
repetitive string by the substrings “A,” “B,” and “C,” because
each symbol accurately predicts the following symbol. A rather
different approach that also uses modern text processing
techniques is discussed in the Related Work section.

Figure 1 shows a more realistic example of the strings that
result from our construction. The boldface string at the top is a
short piece taken from Forrest’s synthetic training data for lpr
[2], in which symbols have replaced the original data values.
The lines below the boldface string show successive (multiple-
length) substrings that “cover” the trace fragment. Each
substring (e.g. CEAB or CD) consumes one more symbol of the
input than the preceding substring.

G A H C E A B C C C D A B C C

G A H

 H C

 H C E

 C E A

 C E A B

 B C

 C

 C

 C D

 C D A

 C D A B

Figure 1. Multiple-length strings covering a test string

Intuitively, the strings of Figure 1 are selected for their
predictive power. The fact that the current string is CEA, for
example, constrains the (legitimate) possibilities for the
subsequent symbol. Note that this fragment is too short for the
predictive power of the strings to be apparent. It is presented
here solely to provide an idea of how the multiple-length strings
cover a trace.

3. Construction of a self database with
multiple-length strings
In this section, we describe our construction. The description is
in three steps:

(1) We construct a suffix tree for N-grams of the training data,
for some value of N that is “large enough.” N will be the
upper limit on the length of the multiple-length N-grams.
Note that picking a “large enough” N for variable-length
N-grams is much easier than picking a good value for
fixed-length N-grams. A finite state machine (FSM) for
the two-finger algorithm (equivalent to Forrest’s sliding
window algorithm) can be constructed immediately from
the suffix tree.

(2) We can compact the suffix tree to a directed acyclic graph
(DAG) by merging “equivalent” subtrees. The result is a
set of strings of varying lengths that is equivalent to the
original set of N-grams. The DAG also gives rise to a
FSM.

(3) By introducing a variation on the compaction, we can
merge two subtrees if they are “almost equivalent.” This
enables us to introduce a bias toward short strings by
removing longer strings that are approximately equivalent
to shorter ones. The result is a weakening of the sliding
window algorithm, for the large value of N chosen.
Intuitively, choosing a large value of N increases the size
of the self database by introducing long strings, some of
which are arbitrary concatenations of shorter ones. The
approximation step removes longer strings that are
approximately equivalent to shorter ones.

3.1 The Two-Finger Algorithm
In [6], Forrest defines the self of Unix processes in terms of a
sliding window (of constant width N) over the sequence of
system calls. “Self” is the set of strings of length N that appear
in training traces. In this section, we show how to derive a
FSM implementation of the sliding window algorithm.

We begin with a suffix tree, a data structure commonly used in
string searching algorithms (see, for example, [7]). A suffix
tree for a set of keywords (in our case, the set of N-grams) is a
tree each of whose nodes corresponds to a distinct suffix of one
or more of the keywords. Figure 2 shows a suffix tree for the 4-
grams of the example trace.

In general, a suffix tree for a string contains every suffix of the
string—so the suffix tree for a string of length m has m distinct
suffixes. The suffix tree for a set of strings contains every
suffix of each string. A suffix tree for a set of N-grams can be
constructed by first building a suffix tree for the set of training
strings and then truncating each branch at depth N.3

A

C

B

A

B C

B

B

C

C

B

A

B

C

C
C

C
B

B
A

A

A

B

C C

A

Figure 2. A suffix tree for the sample string A B C C A B

B C C A A B C

Each node at depth k (k���������	��
		����labeled with a k-gram
of the training strings. The leaf nodes at depth N are labeled
with N-grams (ABCC, ABBC, etc.). The root node is labeled
with the empty string.

3 The suffix tree will in general include branches of depth less

than N, representing final suffixes of the training strings.
This distinguishes it from a keyword tree for the N-grams,
which has the same branching structure but each of whose
branches contains exactly N edges.

4

Each edge is labeled with a symbol. For example, an edge
labeled A goes from node C to node CA.

Suffix links connect each node to its longest proper suffix. For
example, the suffix link of the node labeled with ABCC goes to
the node labeled with BCC.4 Suffix links are not labeled; the
suffix link from a node corresponds to all labels that do not
occur on out-edges of that node. The root does not have a
suffix. Figure 3 depicts the suffix tree of Figure 2 with a few
suffix edges shown as dashed lines (inserting all of the suffix
edges would make the graph hard to read). For example, the
suffix of ABCC is BCC. The suffix of BCCA is CCA. All suffix
edges for the path BCCA are included.

The suffix links provide a way to go from an N-gram (a leaf
node) to the following N-gram—it is merely necessary to
follow the suffix link from the leaf node and then the edge
labeled with the last symbol of the following N-gram. For
example, from ABCC, one can follow the suffix link to BCC,
from which an out-edge leads to BCCA. Suffix links are also
useful in handling anomalies, as will be seen below.

A

C

B

A

B C

B

B

C

C

B

A

B

C

C
C

C
B

B
A

A

A

B

C C

A

Figure 3. Suffix tree with some suffix pointers

Out-edges from the root node include only the symbols that
appear in the training data. New symbols can occur during
detection—for example, in this case, if we encounter a “D.”
Hence, our detection algorithm needs one more node, which is
labeled “UNKNOWN_ SYMBOL.”

The two-finger detection algorithm can be described as follows.
Imagine that while reading a test string, you enclose a substring
of letters with your two index fingers. As you read the string,
you move your fingers so they always contain the current
contents of the sliding window. Suppose you are reading the
test string ABCCABBCCABABC. You begin with both fingers
together at the beginning of the string. This (initial) state
corresponds to the root node of the tree, or the empty string.
Moving your right finger one letter to the right corresponds to
descending one level (along a labeled edge) in the tree of Figure

4 When used in string searching algorithms, suffix trees

typically have fewer nodes and a string of symbols per edge.
To implement error recovery in the sliding window algorithm,
we need a node for each k-gram.

3. In this case, with successive moves of your right finger, you
successively visit states A, AB, ABC, and ABCC. However, we
require that your fingers be separated by at most N letters. In
order to move past the Nth letter, you must move both fingers
one letter to the right. The corresponding action in the suffix
tree is to move along the suffix link from the current node to the
node representing the suffix of the label of the current node.
For example, from state ABCC you move your left finger and
arrive at state BCC. (Note that the use of suffix trees ensures
that this state is in the tree.) You may now move your right
finger again, which brings you to state BCCA.

The right-finger moves correspond to edges in the tree, while
left finger moves correspond to the suffix links. We can
imagine augmenting the tree with additional “branches”
corresponding to the two-finger moves. It is easy to see how,
using left-, right-, and two-finger moves, we can traverse any
string that contains no anomalies. After reading in an initial N
symbols from a completely normal trace, the FSM executes an
alternating series of two-finger moves, each of which ends with
the fingers enclosing an N-gram.

An anomaly requires us to use left-finger moves. The example
test string given above is identical to the training string, except
that after the tenth character, an additional B has been inserted,
so that the string ends with “CCABABC” instead of “CCAABC.”
From the node labeled CCAB, we follow a suffix link (left-
finger move) to CAB. Since there is no node CABA, we follow
the suffix link to AB, but that node also has no out-edge labeled
A. We then follow another suffix link to B, and finally a suffix
link to the root, which does have an out-edge for A. The three
extra suffix links correspond to three anomalous N-grams in the
input string (CABA, ABAB, and BABC). From the root, edges
descend to ABC.

Based on the suffix tree, it is straightforward to define a finite
state machine that implements Forrest’s sliding window
algorithm. First, we recall the definition of a state-output
automaton, which produces output for each state. Then we
define a suffix automaton to be a state-output machine that
captures the way we use suffix links as “none of the above”
transitions. Finally, we will show how the suffix tree gives rise
to a suffix automaton.

Definition. A state-output machine (following [1]) is a
quintuple (S� � �Y� ����	
	

(1) S is a finite set of states.

(2) � ��������	����� �����	� �	�� ���	� ������������	���� � �� ��� ��	�
�	�������
������������������������������
���� k is the set of
strings of length k.

(3) ��S �� � �S�������
����������������������	���������� �����
be extended to strings of input symbols in the obvious
way.

(4) Y is the set of outputs.

(5) ��S �Y is an output function from states.

Notice that the output is determined by the state. Upon entering
a state, the FSM emits an output symbol. In this paper, we are
concerned only with Y = {0,1}, where 1 signifies an anomaly
���� � ��	� ���	��	� ��� ��� ��������� � !�� �s) = 0, we call s an
accepting state.

5

Definition. A suffix automaton is an 9-tuple
(S� � �s0,s �

� �Y� ����	
	�S�� � Y������ ��
	���	����	������
���
state-output machine. A suffix automaton has partial functions
that define ordinary state transitions for some input symbols
� s) for each state s�� �"�
���������������������� s, the effect of
��	������������������	���	��#����������$���������� �

To define the executio������� �����$������������	��		�� ��s0,
s �� ������ ��� ��	���	����	�%��
���&��
�������������

	���������
��� ��	� �
����	�� ��� ��	� �����$� �
		�� ���� � �	���	�� ��	� �����$�
transitions. We will need s0, s �� ���� � ��� 	���
	� ����� ��	�
transition function for the suffix automaton is well defined.

�������	�������
��������������� s. For each node s���	�� s�� � �S
�	���	��
����
������	��
������������
����	�����	�� s���� ���'�(� ��

s can be extended to strings of input symbols.

��	� �����$� ��������� ��S �S defines the suffix of each node
except s0. We will define execution at s������(���	��
��������� s
if possible, and otherwise to take a transition defined by �s). If
�s����	��)����#	�������
��
���	��
����������	��
�� � �s)), and

so on. In order to ensure that the transition is well defined, we
must make sure that following suffix transitions does not lead
���������������	��������*	�
	+��
	��������	
	�	$���������������� �

S � , from the states S������	�����
�������	
������������� �s)
= 0 iff s = s0 and that for all s ,� s0�� � �s��� -� �s)-1. This
ensures that all members of the sequence s, �s), � �s)), … are
distinct and that every such sequence terminates (at s0). We let
�s) denote the sequence starting at state s.

The special state s is needed in order to define transitions at s0

��� �-� s0 is not empty, since s0�������������$�����	��� s is empty
���� �s) = s0.

We can now define execution of a suffix automaton by
providing the transition function for the equivalent state-output
machine. For each state s and each input symbol x,

�s,x��-� s(x) if x �� s

�s,x��-� � �s),x) if x �� s and s ,�s0,

�s0,x) = s if x �� s0.

That is, if there is a transition from s labeled x, it defines the
following state. If not, and if s has a suffix state, the suffix state
defines the following state. However, one state, s0, has no
suffix. If s0 has no transition labeled x, the following state is s .

Having defined the general operation of a suffix automaton, we
now show how to construct a suffix automaton for a given
suffix tree.5 In such an automaton, S contains one state for each
node in the suffix tree. Because of the nature of the sliding
window algorithm, � �s s�

j () .

��	� �����$� ���(�� �	���	� �� � ��	� ��������� � ����� 	� �		�� ��
�
ordering suffix chains is the depth of s in the tree. The state s0
corresponds to the root node and s to the
UNKNOWN_SYMBOL node.

��	��
����	�������	������$��
		���	����� ������	���#����������
�
nodes with depth less than N. In the example of Figure 3�� AB =
{B,C.����� AB(C) = ABC���"�
����	������	�������	�����	��� �

5 In this discussion, we will usually not distinguish between

nodes of the tree and the corresponding states. The mapping
should be obvious.

with functions corresponding to the two-finger moves.

Formally, s� = ()sj
� and ()s x� = () ()s x

j
d for all x in ()sj

� .

"�
�	$����	�� ABCC(A) = BCCA.

The set Y����������������������/ �0.�����	����������������� ����
��������	���	���� ��) = 1. For s ,�� �� �s) = 0 iff s corresponds
to a node of the suffix tree at depth N. (Note that the automaton
does not emit any output for the first N-1 symbols. The output
can be suppressed by filtering the output of the automaton
through some counting device.)

3.2 Compressing the finite state machine
By the nature of the sliding window algorithm, the suffix tree
exhibits a good deal of redundancy. We now remove the
redundancy by identifying and merging equivalent states. The
intuitive notion of equivalence we use here is that if two
suffixes of an N-gram are equally good at predicting which N-
grams can follow (without causing an anomaly), then we will
consider them equivalent. In the case of anomalies, this will
enable us to move our left finger over several symbols instead
of just one symbol at a time. An example of redundancy may
be seen in Figure 4, where similar portions of the tree of Figure
2 are shown as dotted lines (note that �AB) = B).

A

B C

B

B

C

B

A

C

C
C

C
B

A

C C

Figure 4. Redundant portions of (part of) the suffix tree

We now formalize this notion of similarity between subtrees as
an equivalence relation between states of a suffix automaton
�����������	������������$��
		���1	���������� �s) is the sequence
of suffix states of s. We define two states to be similar if they
�
	��	��	
����� �� �����
������� �s) and their normal (branch)
transitions go to equivalent states. (For example, in Figure 4,
AB and B are similar.)

Definition. If s1�-� �s2) or s2�-� �s1), states s1 and s2 are similar
(s 1 ~ s2) iff

(a)
1 2s sS = S and

(b) �x �
1s

S ,
1
()s xd =

2
()s x� or

1
()s xd ~

2
()s x� .

This is well defined for a suffix automaton derived from a

suffix tree, because for a node s at depth less than N, ()
s

xd has

greater tree depth than s, and the tree depth is bounded by N.
Note that by construction, every node s at depth N is similar to

its suffix (because ()s sj
� � � and ()() ()s sx x

j
d d� for all

x in s�). We let 2��	���	���	��
������#	������
	����3�����	��2����

6

an equivalence relation on S, and we can form the quotient set S
/2���*	��	��4s] denote the equivalence class of s in S/2���

The states S /2���
���������$������������� ��s0, s , and Y map to
S /2� ��� ��	� ��#�ous way, but we must still define the suffix

function ĵ , the depth function m̂ , and the output function b̂
on members of S/2���*	�������	������$������	�	+��#��	��	�������
to be the suffix of its smallest member (e.g., we want the suffix
of [AB] to be the equivalence class of the suffix of [B], since AB
2� B). Informally, we consider B to be the representative
member of S/2�� �"�
�������������	
� ��	��	��	
����� �s)— s,
� (s), � (� (s)), etc. Let be the last member of the sequence
that is similar to s, i.e., the member that is highest in the tree.
Then we define ĵ ([s]) to be [� ()]. Similarly, we can define

the depth function on S/2���� m̂ ([s]) = [� ()].

We define b̂ (the accepting states) slightly differently in order
to ensure that some states of S/2��
	����	������� �*	��	���	����
equivalence class to be accepting if it is the image of any
accepting state. Consider the set of all states s �������
	�������
�

to s, and consider the set of ()sm � . b̂ ([s]) = 0 iff N is in the
set.

The resulting automaton for the example of Figure 4 is shown
in Figure 5 (state names are omitted in Figure 5). All nodes are
accepting, except the root and nodes labeled [A], [B], and [C].
Note that states ABBC, BBC, and BC from the original
automaton all map to [BC]. The suffix state for [BC] is [C], the
image of the suffix state of BC. [BC] is an accepting state,
because ABBC is accepting. The accepting states are [AA],
[AAB], [BC], [CC], [CA], [CAB], and [BB].

Figure 5. Automaton resulting from compression of Figure
2

Note that 2� ��	�� ���� ��

	������ ��� ��	� ����
��� ������� ���
automaton equivalence (as in the Myhill-Nerode theorem [9])
that two automata should produce the same output for a given
input string. In general, the compressed automaton represents a
weakening of the original finite state machine, in the sense that
it will detect monotonically fewer anomalies. For example, if
we run the resulting FSM on the test string
ABCCABBCCABABC (in which a B is inserted between the two
final As of the training string), we get two anomalies (marked
with asterisks below) after the last CAB, since A and B are not
accepting states. By contrast, the original automaton found
three anomalies.

 C C A B A B C

 C C

 C A

 C A B

 A*

 B*

 B C

The empirical question is whether the compressed automaton is
still able to detect attacks. We will address this question in
Section 4.

3.3 Automatic construction without N
Given a value for N, the construction so far enables us to define
a set of “N-grams” of different lengths and a compressed
automaton that implements the sliding window algorithm. It is,
however, not sufficient for achieving our goal, which is to
automatically find strings of the “right” length.

Now suppose that we pick a large value of N—not huge, but
large enough that we are comfortably assured that it exceeds
whatever “good” value of N we would like to end up with. The
result will be a self database containing more strings than we
need, some of them quite long. Suppose further that two
subtrees are similar, in the sense of Figure 4, except that way
down in the subtrees there is a difference between them. If the
difference is far enough down, then we might wish to treat the
two subtrees as if they were equivalent. If we have chosen a
large enough value for N, then we do not mind small
discrepancies lower down in the subtrees. Many longer strings
are simply artifacts anyway—they may well be concatenations
of shorter strings that already capture the essence of the training
data.

In a suffix automaton based on a suffix tree, let � s
i
 be the

sequences of length i that can occur without causing a transition
through a suffix state. They correspond to tree paths in the

suffix tree. � s
1
���� s. In our example, �CA

1
 is {A,B}, �CA

2
 is

{AB, BB}, �CA
3

 is {ABC, BBC}, and so on. For this weaker

notion of equivalence, we require only that � s
i
 be the same for

the two subtrees up to � s
k

. Intuitively, the subtrees match

down to a depth of k, but they may diverge below that. We call
the states corresponding to the roots of the two subtrees k-
similar. For example, in Figure 2, states CA and A are not
similar, because they are not 2-similar (node AB has two out-
edges, while node CAB has only one). However, they are 1-
similar.

Definition. Any state is k-similar to itself. If s1�-� �s2) or s2 =
�s1), then s1 and s2 are k-similar, s1 ~k s2, iff

(a) k = 0, or

(b) � s
i

1
= � s

i

2
, and

�x �� s1
,

1
()s xd ~k-1

2
()s x� .

The transitive closure of k-similarity is also an equivalence
relation on S and the k-similar states form a suffix automaton in

A

A
B

B

C

B

C
C

A
B

C

C

B

A

C

B

A

C

7

the same way as the similar states. We call k the approximation
parameter.

Using k-similarity, we can compress the automaton of Figure 2.
Figure 6 shows the graph that results from the example suffix
tree by compression using an approximation parameter of 1. It
differs from the graph of Figure 5 in that there are no nodes
corresponding to CA or CAB. All nodes are accepting, except
for the root node and [C].

If we run the resulting automaton on the test string
ABCCABBCCABABC (in which a B is inserted between the two
final As of the training string), we get no anomalies, as shown
in the sequence of states below. The suffix link from [A] goes
to the root (empty string) node, and thence to state [B], but in
this automaton [A] and [B] are accepting.

 C C A B A B C

 C C

 A

 B

 A

 B

 B C

In general, the weakened automaton that comes from using k-
similarity will find fewer anomalies than either the original
automaton or the automaton based on similarity, for the same
value of N. However, recall that our plan is to pick a large
value of N (rather than N = 4, as in this example). The hope is
that even if the resulting automaton cannot detect all anomalies
for the large value of N, it will still be able to detect attacks that
could be detected for some smaller values of N.

Figure 6. Result of compression using k=1

In the next section, we address the empirical question of how
well the resulting detector is able to detect actual attacks.

4. Results
In this section, we compare the effectiveness of this algorithm
with the sliding window algorithm and briefly examine its
effect on the size of the self database.

Characterizing the program behavior with multiple-length
strings is essentially a weakening of the characterization as a set
of N-grams (but with a larger N). Because our algorithm is
weaker than Forrest’s sliding window algorithm and we assume
that training continues until the self database converges, our

algorithm will not introduce any false positives. That is, it will
not find “anomalies” that Forrest’s N-gram method does not
find. However, we need to show that it is effective in finding
anomalies—i.e., does not introduce false negatives.

The algorithm presented here has been programmed and applied
to three sets of training data:

• lpr training data and exploit from the University of New
Mexico [2]

• inetd training data and exploit from the University of
New Mexico [3]

• data from the PersonnelTracker application collected by
the CORBA Immune System [10].

4.1 Synthetic lpr data from the University
of New Mexico
Figure 7 shows a graph of the locality frame measure [8] for an
lpr exploit, as measured against UNM’s “synthetic normal”
self database for lpr. The locality frame measure counts the
number of anomalies in the last L N-grams and is a good
indicator of anomaly clusters, which characterize attacks.
Following Forrest, we have used L = 20 in this paper. For
example, a locality frame measure of 10 means that half of the
previous 20 N-grams were anomalous. The spike at the end of
the graph corresponds to an lprcp attack (the two minor
bumps are due to symbols that do not appear in the training data
and are not important).

synthetic lpr, N = 6

0
2
4
6
8

10
12
14
16
18
20

1 23 45 67 89 11
1

13
3

15
5

17
7

19
9

22
1

24
3

26
5

28
7

30
9

Events

A
n

o
m

al
y

m
ea

su
re

exploit

Figure 7. N-gram anomaly measure for lpr exploit (N = 6)

Varying-length strings, N=15

0

5

10

15

20

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

Events

A
n

o
m

al
y

m
ea

su
re

lpr exploit

Figure 8. Multiple-length strings (max length = 15) for lpr

exploit

Figure 8 shows the same exploit when measured against a
multiple-length strings self database with a maximum string
length of 15. In this and subsequent examples, we use an

A

A

B

B

C

B

C

C

C

C

B
C

A

C

A

8

approximation parameter of 1. This weakens the detector the
most and results in a self database with the shortest strings—in
short, it is more apt to result in false negatives than other values
of d. Note that the anomaly value reaches a maximum of 13
(out of 20) in Figure 7 but only 5 in Figure 8. Note also that the
minor bumps do not appear in Figure 8. In both cases, the data
are sufficient to distinguish an attack from a non-attack.

4.2 Inetd data from the University of New
Mexico
Figure 9 and Figure 10 show analogous anomaly measure data
for a denial of service attack against inetd. The self database
was generated from training data collected at UNM. In this
example, the maximum anomaly value for the N-gram method
is 20, vs. 10 for multiple-length strings. Again, the attack is
clearly visible in both.

Figure 9. N-gram anomaly measure for inetd exploit (N =
6)

0
2
4
6
8

10
12
14
16
18
20

0

41
1

82
2

12
33

16
44

20
55

24
66

28
77

32
88

36
99

41
10

45
21

49
32

53
43

57
54

61
65

65
76

69
87

73
98

78
09

Events

A
n

o
m

al
y

m
ea

su
re

Figure 10. Multiple-length strings (max length = 15) for

inetd exploit

4.3 Attack on a CORBA application
The CORBA Immune System uses the N-gram method to catch
rogue clients. Some applications require client and server
programs to work closely together; the server may rely on the
client to follow a certain protocol or maintain certain invariants.
A rogue client is a malicious program that masquerades as a
legitimate client of such a server.

Figure 11 shows the anomaly measure graph of a rogue client,
using training data and attack data collected by the CORBA
Immune System for the PersonnelTracker application. For this
application, N = 3. Note that Figure 11 looks very different
from the graphs of the Unix processes. In the lpr and inetd
examples, most of the execution is normal, with an attack

occurring after a period of normal execution. In the rogue
client type of attack, the entire execution is abnormal, since
none of the normal client code is being executed.

Rogue client, N=3

-4

1

6

11

16

21

22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1

14
8

Events

A
n

o
m

al
y

m
ea

su
re

Figure 11. Rogue client, measured using N-gram method (N

= 3)

Figure 12 shows the results for the multiple-length string
method (maximum length = 6), using the same training and
attack data. As in the Unix examples, the difference between an
attack and a random anomaly is clear, although all of the
anomaly values are smaller.

Figure 12. Rogue client, measured using multiple-length
strings (N = 6)

An example of a normal trace with a slight anomaly is shown in
Figure 13 (multiple-length strings, max length = 6).

Figure 13. Insignificant anomaly in normal client

4.4 Self database size
For the examples we have tested, multiple-length strings allow
the self database to be much smaller than the corresponding N-
gram database. For example, using Forrest’s lpr data, there
are 177 strings and 1062 symbols in the self database, while
with our method, there are 131 strings and 318 symbols. For

Rogue client, multiple-length strings, N=6

0

5

10

15

20

0 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

12
8

13
6

14
4

Events

A
n

o
m

al
y

m
ea

su
re

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

Events

A
n

o
m

al
y

m
ea

su
re

0
2
4
6
8

10
12
14
16
18
20

0

42
5

85
0

12
75

17
00

21
25

25
50

29
75

34
00

38
25

42
50

46
75

51
00

55
25

59
50

63
75

68
00

72
25

76
50

80
75

Number of events

A
n

o
m

al
y

m
ea

su
re

9

inetd, our method reduces Forrest’s 126 strings and 756
symbols to 92 strings and 281 symbols.

Such comparisons are not entirely fair, since one self database
is a set and the other a finite state machine. That is, there is
some hidden information in the state machine—namely, which
symbol(s) can appear next in normal traces—that supplements
the information in the strings. Nevertheless, the primary reason
for the reduction is the intrinsic redundancy in N-grams, which
our method wrings out. The number of transitions in the FSMs
is reduced along with the number of strings and symbols in the
self database. For example, for lpr, the two-finger algorithm
requires 774 transitions, as opposed to 307 for multiple-length
strings.

In short, our results so far suggest that extra processing at the
time of constructing the self database can result in a
significantly more efficient detector at run time.

4.5 Self database size as a function of N
For our method to be practical, we would like the size of the
FSM to converge as N grows, indicating that there is a “natural”
set of covering strings. It also means that in selecting a
maximum value for N, there is no penalty for choosing a
slightly larger value than necessary. Figure 14 shows that this
is indeed the case. As N increases, the number of N-grams
(first column) grows, while the number of states in the FSM
(second column) levels off after N = 6. The number of
multiple-length strings in the database (the number of accepting
states in the FSM, shown in the third column) also levels off
after N = 6.

0

50

100

150

200

250

3 4 6 8 10 15

N

N
u

m
b

er
 o

f
st

ri
n

g
s

(s
ta

te
s)

#Ngrams

FSM states

var strings

Figure 14. Growth of synthetic lpr database as function of

N

Figure 15 shows the analogous chart for the growth of the self
database in the rogue client example.

0

200

400

600

800

1000

1200

2 3 4 6 10

N

N
u

m
b

er
 o

f
N

-g
ra

m
s

(s
ta

te
s)

Ngrams

FSM states

var strings

Figure 15. Growth of PersonnelTracker database as

function of N

5. Related Work
Hervé Debar has used traditional string processing techniques
to find longest repeating patterns in training data [4]. Consider,
for example, the string “ABCABCABCABC.” Debar’s method
would characterize that string using the repeating substring
“ABC.” By contrast, we look for very short strings that are
good predictors of the next character. The result is a sliding
window that always advances one character to the right, but
whose width may vary at each step. As noted above, we would
characterize this string by the substrings “A,” “B,” and “C.”

Because of his focus on repeating patterns, Debar’s detection
method is based on matching adjacent substrings. His
algorithm, then, hops from one substring instance to the next,
rather than sliding from one symbol to the next. At each hop,
the test string is tested against the various patterns in the self
database.

Like ours, Debar’s construction of the self database uses a
suffix tree, but instead of pruning to a maximum depth of N, he
prunes branches based on relative frequency in the training
data. Thus, strings that occur relatively few times are assumed
to be rare in practice and are removed from the suffix tree. His
method relies on a rareness parameter, as ours does on the
approximation parameter.

Debar’s input data for both training and detection consists of
audit events, rather than the kernel calls used by Forrest. The
audit events are further preprocessed to remove consecutive
occurrences of the same call—hence any two adjacent symbols
in the processed data are guaranteed to be different. Given this
input data and his adjacent string detection method, he has
found that his variable-length strings are just as good at
detection as his fixed-length strings. Because of the differences
in input data, preprocessing, and detection method (hop vs.
skip), it is difficult to compare Debar’s results (for either fixed-
length or variable-length strings) with ours or with those
obtained by the University of New Mexico group.

6. Future Research
The results that we have presented here are very preliminary.
In order to demonstrate its general applicability, our method
should be applied to many other examples, both to further
examples of Unix processes and to examples from other
domains to which the N-gram method has been applied.

Previous work in Computational Immunology has been
criticized on the grounds that it relies on a “magic number”—
that there are no compelling reasons for using six as the value
of N. Our results suggest that six is indeed a natural value for N
in sequences of Unix kernel calls, since the number of multiple-
length strings resulting from our method stops growing after
N=6 (see Figure 14). It would be interesting to study more
examples to find out whether they all support the same value, or
whether the value varies significantly depending on the
program.

Finally, in the examples we have studied, an approximation
parameter of 1 (k = 1) was adequate for detection. These
examples were characterized by excellent coverage (that is, the
training data covered all program behavior). In larger
applications, complete coverage may be difficult or too
expensive to obtain. Larger approximation parameters give a
closer approximation to the original sliding window algorithm.

10

It may be possible to compensate for poorer coverage by using
larger approximation parameters. To date, we have little
experience with values greater than one.

7. Conclusions
We have presented a way of constructing a self database for a
program in the form of a finite state machine. The finite state
machine implicitly defines a set of multiple-length strings that
cover the empirical training data. The primary advantage of
this method over N-grams is pragmatic: it is not necessary to
find a suitable value for N. The method also provides an
implementation technique that generates efficient detectors.
The resulting self database is less sensitive to anomalies than
the N-gram database but it appears to have sufficient sensitivity
in practice to detect attacks.

8. Acknowledgements
The two-finger finite-state-machine implementation of Forrest’s
sliding-window algorithm was developed jointly with Matthew
Stillerman and Francis Fung of ORA. David Rosenthal, Ira
Moskowitz, and anonymous reviewers provided helpful
criticisms of earlier versions of this paper.

9. References
[1] Arbib, M.A., Theories of Abstract Automata. 1969,

Englewood Cliffs, NJ: Prentice-Hall.

[2] Computer Science Department University of New Mexico,
Synthetic UNM lpr data. 1995:
http://www.cs.unm.edu/~immsec/data/synth-lpr.html.

[3] Computer Science Department University of New Mexico,
UNM live inetd data. 1996:
http://www.cs.unm.edu/~immsec/data/live-inetd.html.

[4] Debar, H., Dacier, M., Nassehi, M., and Wespi, A., "Fixed
vs. variable-length patterns for detecting suspicious
process behavior," in ESORICS 98, 5th European
Symposium on Research in Computer Security, 1998,
Louvain-la-Neuve, Belgium: Springer Verlag.

[5] Forrest, S., Hofmeyr, S., and Somayaji, A., "Computer
immunology," Communications of the ACM, 1997, 40(10),
p. 88-96.

[6] Forrest, S., Hofmeyr, S.A., and Somajayi, A., "A Sense of
Self for UNIX Processes," in 1996 IEEE Symposium on
Computer Security and Privacy, 1996: IEEE Press.

[7] Gusfield, D., Algorithms on Strings, Trees, and Sequences.
1997: Cambridge University Press.

[8] Hofmeyr, S., Forrest, S., and Somayaji, A., "Intrusion
detection using sequences of system calls," Journal of
Computer Security, 1998, 6, p. 151-180.

[9] Nerode, A., "Linear automaton transformations,"
Proceedings of the American Mathematics Society, 1958,
9, p. 541-544.

[10] Stillerman, M., Marceau, C., and Stillman, M., "Intrusion
Detection for Distributed Applications," Communications
of the ACM, 1999, 42(7), pp. 62-69.

